
Short Notes: Form 4 Chemistry Chemical Formulae and Equation

Calculation

For Solid, liquid or gas	For gas (only)
number of mole = $\frac{\text{mass of subtance}}{\text{molar mass}}$	number of mole = $\frac{\text{volume of gas}}{\text{molar volme}}$
Molar mass = RAM/RMM/RFM in gram	Molar volume = 24dm^3 at room temperature Molar volume = 22.4dm^3 at s.t.p.
For Solution	For quantity of particle(atom,molecule,ion)
number of mole = $\frac{MV}{1000}$	number of mole = $\frac{\text{quantity of particle}}{6.02 \times 10^{23}}$
M = molarity V = Volume of solution in cm ³	

Summary

Chemical Formula

Cation (Positive Ions)

Ion	Symbol	Ion	Symbol	Ion	Symbol
Potassium	\mathbf{K}^+	Calcium	Ca ²⁺	Aluminium	Al ³⁺
Sodium	Na ⁺	Magnesium	Mg ²⁺	Iron (III)	Fe ³⁺
Lithium	Li^+	Zinc	Zn ²⁺	Chromium(III)	Cr ³⁺
Hydrogen	H^+	Barium	Ba ²⁺		
Argentums(I)	Ag^+	Iron (II)	Fe ²⁺		
Mercury(I)	Hg^+	Tin (II)	Sn ²⁺		
Ammonium	$\mathrm{NH_4}^+$	Lead(II)	Pb ²⁺		
		Copper(II)	Cu ²⁺		
		Manganese(II)	Mn ²⁺		

Anion (Negative Ions)

Ion	Symbol	Ion	Symbol	Ion	Symbol
Oxide	O ²⁻	Hydroxide	OH	Ethanoate	CH ₃ COO ⁻
Fluoride	F	Sulphate	SO4 ²⁻	Manganate(VII)	MnO ₄ ⁻
Chloride	Cl	Nitrate	NO ₃	Dichromate(VI)	$Cr_2O_7^{2-}$
Bromide	Br	Carbonate	CO ₃ ²⁻	Phosphate	PO ₄ ³⁻
Iodide	I			Thiosulphate	$S_2O_3^{2-}$

Formulae for Certain Molecule

Karbon monoxide	СО	Ammonia	NH ₃
Carbon dioxide	CO_2	water	H ₂ O
Nitrogen monoxide	NO	Hydrogen chloride	HCl
Nitrogen dioxide	NO ₂	Tetrachloromethane	CCl_4
Sulphur dioxide	SO ₂	Glucose	$C_{6}H_{12}O_{6}$
Sulphur trioxide	SO ₃	Hydrogen bromide	HBr
Fluorine	F ₂	Hydrogen iodide	HI
Bromine	Br ₂	Hydrogen sulphide	H_2S
Chlorine	Cl ₂	Ethanol	C ₂ H ₅ OH
Iodine	I ₂	Ethanoic Acid	CH ₃ COOH

Periodic Table

Reaction of Group 1 Elements

1. Reaction with Oxygen

The entire group 1 metal can react with oxygen to form metal oxide.

$$4Li + O_2 \longrightarrow 2Li_2O$$

$$4Na + O_2 \longrightarrow 2Na_2O$$

$$4K + O_2 \longrightarrow 2K_2O$$

The metal oxide of group 1 elements can dissolve in water to form alkali (hydroxide) solution

$$Li_{2}O + H_{2}O \longrightarrow 2LiOH$$

$$Na_{2}O + H_{2}O \longrightarrow 2NaOH$$

$$K_{2}O + H_{2}O \longrightarrow 2KOH$$

2. Reaction with halogen (Chlorine)

 $2\text{Li} + \text{Cl}_2 \longrightarrow 2\text{LiCl}$ $2\text{Na} + \text{Cl}_2 \longrightarrow 2\text{NaCl}$ $2\text{K} + \text{Cl}_2 \longrightarrow 2\text{KCl}$

3. Reaction with water

The entire group 1 metal can react with water to produce alkali (hydroxide) solution and hydrogen gas.

 $\begin{array}{l} 2\text{Li}+2\text{H}_2\text{O} \longrightarrow 2\text{LiOH}+\text{H}_2\\ 2\text{Na}+2\text{H}_2\text{O} \longrightarrow 2\text{NaOH}+\text{H}_2\\ 2\text{K}+2\text{H}_2\text{O} \longrightarrow 2\text{KOH}+\text{H}_2 \end{array}$

Reaction of Group 17 Elements

1. React with water

 $\begin{array}{c} Cl_2 + H_2O \longrightarrow HCl + HOCl \\ Br_2 + H_2O \longrightarrow HBr + HOBr \\ I_2 + H_2O \longrightarrow HI + HOI \end{array}$

2. React with Sodium Hydroxide

 $\begin{array}{l} Cl_2 + 2NaOH \longrightarrow NaCl + NaOCl + H_2O \\ Br_2 + 2NaOH \longrightarrow NaBr + NaOBr + H_2O \\ I_2 + 2NaOH \longrightarrow NaI + NaOI + H_2O \end{array}$

3. React with Iron

 $3Cl_2 + 2Fe \longrightarrow 2FeCl_3$ $3Br_2 + 2Fe \longrightarrow 2FeBr_3$ $3I_2 + 2Fe \longrightarrow 2FeI_3$

Preparation of Chlorine Gas

 $2KMnO_4 + 16HCl \longrightarrow 2KCl + 2MnCl_2 + 5Cl_2 + 8H_2O$

Electrochemistry

Electrolyte

Ionisation of Electrolyte Ionisation of Molten Compound

$$\begin{array}{c} PbBr_{2} \longrightarrow Pb^{2+} + Br^{-} \\ NaCl \longrightarrow Na^{+} + Cl^{-} \\ Al_{2}O_{3} \longrightarrow 2Al^{3+} + 3O^{2-} \end{array}$$

Ionisation of Aqueous Solution

$NaCl \longrightarrow Na^{+} + Cl^{-}$ $H_{2}O \longrightarrow H^{+} + OH^{-}$	$HCl \longrightarrow H^{+} + Cl^{-}$ $H_{2}O \longrightarrow H^{+} + OH^{-}$	$CuSO_4 \longrightarrow Cu^{2+} + SO_4^{2-}$ $H_2O \longrightarrow H^+ + OH^-$

Discharge of Positive Ion	Discharge of Negative Ion
$Na^+ + e \longrightarrow Na$	$2Cl^{-} \longrightarrow Cl_{2} + 2e$
Observation:	Observation:
Grey deposit is formed.	Bubbles of pungent yellowish green gas are
	produced. The gas turns moist litmus paper to red
$Al^{3+} + 3e \longrightarrow Al$	and then bleaches it.
Observation:	
Grey deposit is formed.	$2Br \longrightarrow Br_2 + 2e$
	Observation:
$Pb^{2+} + 2e \longrightarrow Pb$	Molten electrolyte:
Observation:	Brown colour gas is produced.
Grey deposit is formed.	
	Aqueous solution:
$Cu^{2+} + 2e \longrightarrow Cu$	Light brown solution is formed.
Observation:	
Brown deposit is formed.	$2I^{-} \longrightarrow I_{2} + 2e$
1	Observation:
$Ag^+ + e \longrightarrow Ag$	Molten electrolyte:
Observation:	Brown colour gas is produced.
Silver deposit is formed.	Aqueous solution:
L	Light brown solution is formed. The solution turns
$2H^+ + 2e \longrightarrow H_2$	blue when a few drops of starch solution is added in.
Observation:	onde when a rew drops of staren solution is added in.
Gas bubble is formed. A 'pop' sound is produced	$4OH^{-} \longrightarrow O_2 + 2H_2O + 4e$
when a lighted splinter is placed near the mouth of	Observation: $7 O_2 + 2H_2O + 4C$
the test tube.	Gas bubble is formed. Gas produces light up a
	wooden splinter.

Ionisation of Acid

Hydrochloric Acid HCl \longrightarrow H⁺ + Cl⁻ HCl + H₂O \longrightarrow H₃O⁺ + Cl⁻

Nitric Acid HNO₃ \longrightarrow H⁺ + NO₃⁻ HNO₃ + H₂O \longrightarrow H₃O⁺ + NO₃⁻ Sulphuric Acid $H_2SO_4 \longrightarrow H^+ + SO_4^{2-}$ $H_2SO_4 + 2H_2O \longrightarrow 2H_3O^+ + SO_4^{2-}$

Ethanoic Acid $CH_3COOH \longrightarrow H^+ + CH_3COO^ CH_3COOH + H_2O \longrightarrow H_3O^+ + CH_3COO^-$

Chemical Properties of Acid

Acid + Reactive Metal \longrightarrow Salt + H₂ **Example:** $2HCl + Zn \longrightarrow ZnCl_2 + H_2$ $6HNO_3 + 2Fe \longrightarrow 2Fe(NO_3)_3 + 3H_2$ $H_2SO_4 + Pb \longrightarrow PbSO_4 + H_2$ $6CH_3COOH + 2AI \longrightarrow 2AI(CH_3COO)_3 + 3H_2$ Acid + Metal Oxide \longrightarrow Salt + H₂O **Example:** $2HCl + ZnO \longrightarrow ZnCl_2 + H_2O$ $2HNO_3 + MgO \longrightarrow Mg(NO_3)_2 + H_2O$ $H_2SO_4 + CuO \longrightarrow CuSO_4 + H_2O$ $2CH_3COOH + Na_2O \longrightarrow 2CH_3COO^-Na^+ + H_2O$ Acid + Metal Hydroxide \longrightarrow Salt + H₂O **Example:** $2HCl + Ca(OH)_2 \longrightarrow CaCl_2 + 2H_2O$ $HNO_3 + NaOH \longrightarrow NaNO_3 + H_2O$ $H_2SO_4 + 2NH_4OH \longrightarrow (NH_4)_2SO_4 + 2H_2O$ $H_2SO_4 + 2NH_3 \longrightarrow (NH_4)_2SO_4$ or $CH_3COOH + KOH \longrightarrow CH_3COO^-K^+ + H_2O$ Acid + Metal Carbonate \longrightarrow Salt + CO₂ + H₂O **Example:**

 $2HCl + ZnCO_{3} \longrightarrow ZnCl_{2} + CO_{2} + H_{2}O$ $2HNO_{3} + CaCO_{3} \longrightarrow Ca(NO_{3})_{2} + CO_{2} + H_{2}O$ $H_{2}SO_{4} + Na_{2}CO_{3} \longrightarrow Na_{2}SO_{4} + CO_{2} + H_{2}O$ $2CH_{3}COOH + MgCO_{3} \longrightarrow Mg(CH_{3}COO)_{2} + CO_{2} + H_{2}O$

Salt

Solubility of Salt

Salt	Solubility
Salt of potassium, sodium and ammonium	All are soluble in water
Salt of nitrate	All are soluble in water
Salt of sulphate	Mostly soluble in water except:
-	(Pb) Lead sulphate
	(B a) Barium sulphate
	(Ca) Calcium sulphate
Salt of chloride	Mostly soluble in water except:
	(Pb) Lead chloride
	(Ag) silver chloride
	(Hg) mercury chloride
Salt of carbonate	Mostly insoluble in water except:
	Potassium carbonate
	Sodium carbonate
	Ammonium carbonate
Oxide and Hydroxide	Solubility
Oxide	Mostly insoluble in water except: K_2O and Na_2O .
Hydroxide	Mostly insoluble in water except: NH ₄ OH, KOH and NaOH

Preparation of Salt

Preparation of Soluble Salt

Salt of Potassium, Sodium and Ammonium

 $Acid + Alkali \longrightarrow Salt + Water$

Example: Preparation of Sodium Chloride (NaCl)

 $HCl + NaOH \longrightarrow NaCl + H_2O$

Salt of non-Potassium, Sodium and Ammonium

Acid + Reactive metal \longrightarrow Salt + Hydrogen Gas Acid + Metal Oxide \longrightarrow Salt + Water Acid + Metal Carbonate \longrightarrow Salt + Water + Carbon Dioxide

Example: Preparation of Zinc Sulphate (ZnSO₄)

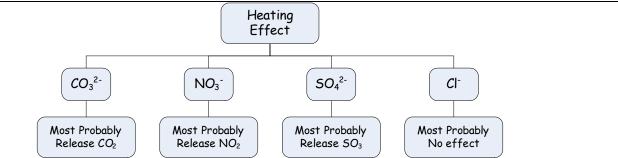
 $\begin{array}{l} H_2SO_4 + Zn \longrightarrow ZnSO_4 + H_2 \\ H_2SO_4 + ZnO \longrightarrow ZnSO_4 + H_2O \\ H_2SO_4 + ZnCO_3 \longrightarrow ZnSO_4 + H_2O + CO_2 \end{array}$

Preparation of Insoluble Salt

Ionic Precipitation

Insoluble salts can be made by double decomposition. This involves mixing a solution that contains its positive ions with another solution that contains its negative ions.

Example: Preparation of Silver Nitrate


$$\begin{array}{c} AgNO_{3 (aq)} + NaCl_{(aq)} \longrightarrow AgCl_{(s)} + NaNO_{3 (aq)} \\ Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \longrightarrow AgCl_{(s)} \quad (ionic equation) \end{array}$$

Colour of Salt

Salt or metal oxide	Solid	Aqueous solution
Salt of:		
Sodium, Calcium, Magnesium, Aluminium, zinc,		
Lead, ammonium	White	Colourless
Chloride, sulphate, nitrate, carbonate		
Salt of Copper(II)		
Copper(II) Carbonate	Green	Insoluble
Copper(II) sulphate, Copper(II) nitrate, Copper(II) chloride	Blue	Blue
Copper(II) oxide	Black	Insoluble
Salt of Iron (II)	Green	Green
Iron(II) sulphate; Iron(II) nitrate; Iron(ID chloride	Green	Oreen
Salt of Iron (III).		
Iron(III) sulphate; Iron(III) nitrate; Iron(III)	Brown	Brown
chloride		T 1 1 1
Lead Iodide	Yellow	Insoluble
Lead Chloride	White	Insoluble
Zink oxide	Yellow when it is hot and white when it is cold.	Insoluble
Lead(II) oxide-	Brown when it is hot and yellow when it is cold.	Insoluble
Magnesium oxide, Aluminium oxide	White	Insoluble
Potassium oxide, Sodium oxide, Calcium oxide	White	Colourless

ONE-SCHOOL.NET

Heating effect on Salt

Heating Effect on Carbonate Salt

Heating Effect on Carbon	hate Salt
Carbonate Salt	Equation of The Reaction
Potassium carbonate	Not decomposible
Sodium carbonate	
	$CaCO_3 \longrightarrow CaO + CO_2$
Calcium carbonate	$MgCO_3 \longrightarrow MgO + CO_2$
Magnesium carbonate Aluminium carbonate	$Al_2(CO_3)_3 \longrightarrow Al_2O_3 + 3CO_2$
Zinc carbonate	$ZnCO_3 \longrightarrow ZnO + CO_2$
Iron (III) carbonate	$Fe_2(CO_3)_3 \longrightarrow Fe_2O_3 + 3CO_2$
Lead(II) carbonate	$PbCO_3 \longrightarrow PbO + CO_2$
Copper(II) carbonate	$CuCO_3 \longrightarrow CuO + CO_2$
Mercury(II) carbonate	$2HgCO_3 \longrightarrow 2Hg + 2CO_2 + O_2$
Silver(I) carbonate	$2Ag_2CO_3 \longrightarrow 4Ag + 2CO_2 + O_2$
Ammonium carbonate	$(NH_4)_2CO_3 \longrightarrow NH_3 + CO_2 + H_2O$

Heating Effect on Nitrate Salt

Nitrate Salt	Equation of The Reaction
Potassium nitrate	$2KNO_3 \longrightarrow 2KNO_2 + O_2$
Sodium nitrate	$2NaNO_3 \longrightarrow 2NaNO_2 + O_2$
Calcium nitrate	$2Ca(NO_3)_2 \longrightarrow 2CaO + 4NO_2 + O_2$
Magnesium nitrate	$Mg(NO_3)_2 \longrightarrow 2MgO + 4NO_2 + O_2$
Aluminium nitrate	$4Al(NO_3)_3 \longrightarrow 2Al_2O_3 + 12NO_2 + 3O_2$
Zink nitrate	$Zn(NO_3)_2 \longrightarrow 2ZnO + 4NO_2 + O_2$
Iron (III) nitrate	$4Fe(NO_3)_3 \longrightarrow 2Fe_2O_3 + 12NO_2 + 3O_2$
Lead(II) nitrate Copper(II) nitrate	$Pb(NO_3)_2 \longrightarrow 2PbO + 4NO_2 + O_2$
	$Cu(NO_3)_2 \longrightarrow 2CuO + 4NO_2 + O_2$
Mercury(II) nitrate	$Hg(NO_3)_2 \longrightarrow Hg + 2NO_2 + O_2$
Silver(I) nitrate	$2AgNO_3 \longrightarrow 2Ag + 2NO_2 + O_2$
Ammonium nitrate	$NH_4NO_3 \longrightarrow N_2O + 2H_2O$

[NOTES: Nitrogen dioxide, NO₂ is acidic gas and is brown in colour.]

Heating effect on sulphate salt	The heating effect on chloride salts
Most sulphate salts do not decompose by heat. Only	All chloride salts are not decomposable by heat
certain sulphate salts are decomposed by heat when	except ammonium chloride.
heated strongly.	Example:
Zinc sulphate, Copper (II) sulphate, Iron (III)	
sulphate	$NH_4Cl \longrightarrow NH_3 + HCl$
$ZnSO_4 \longrightarrow ZnO + SO_3$	т З
$CuSO_4 \longrightarrow CuO + SO_3$	
$2Fe_2(SO_4)_3 \longrightarrow Fe_2O_3 + SO_2 + SO_3$	
Ammonium sulphate	
$(NH_4)_2SO_4 \longrightarrow 2NH_3 + H_2SO_4$	

Identification of Gases

Gasses	Characteristics
Oxygen	Rekindle glowing splinter.
Hydrogen	Explode with a 'pop' sound when brought close to a lighted splinter.
Carbon Dioxide	Turns lime water chalky.
Chlorine	Bleach moist litmus paper.
Ammonia	Pungent smell.
	Turn moist red litmus paper to blue.
	Produces white fume when reacts with concentrated hydrochloric Acid.
Sulphur Dioxide	Pungent smell.
	Bleach the purple colour of potassium manganate(VII).
	Turn moist blue litmus paper to red.
Nitrogen Dioxide	Pungent smell.
	Brown in colour.
	Turn moist blue litmus paper to red.

Qualitative analysis Identification of Anions (Negative ions)

Iuchthic	Identification of Amons (Negative ions)							
	Diluted HCl or		AgNO ₃ follow by	Brown Ring Test				
	diluted HNO ₃ or	(aq) follow by diluted	diluted HNO ₃ .	(+ FeSO ₄ (aq) +				
	diluted H ₂ SO ₄	HCI/HNO ₃		concentratedH ₂ SO ₄				
CO ₃ ²⁻	Carbon Dioxide is released.	White precipitate is formed. It is soluble in diluted HCl/HNO ₃	White precipitate is formed. It is soluble in diluted HNO ₃	-				
SO4 ²⁻	-	White precipitate is formed. It is NOT soluble in diluted HCl/HNO ₃	-	-				
CI.	-		White precipitate is formed. It is NOT soluble in diluted HNO ₃					
NO ₃	-	-	-	Formation of Brown Ring				

Idendification of cation

	NaOH(ak)	NH ₃ (ak)	HCl or NaCl	H ₂ SO ₄ or Na ₂ SO ₄	Na ₂ CO ₃	KI
Na ⁺						
Ca ²⁺	White precipitate.			White precipitate is produced.	White precipitate is produced.	
Mg^{2+}	White precipitate is produced.	White precipitate is produced.			White precipitate is produced.	
Al ³⁺	White precipitate is produced. Dissolve in excess NaOH solution.	White precipitate is produced.			White precipitate is produced.	A A
Zn ²⁺	White precipitate is produced. Dissolve in excess NaOH solution.	White precipitate is produced. Dissolve in excess NH ₃ solution.			White precipitate is produced.	
Pb ²⁺	White precipitate is produced. Dissolve in excess NaOH solution.	White precipitate is produced.	White precipitate is produced. Dissolve in hot water	White precipitate is produced.	White precipitate is produced.	Yellow precipitate is produced. Dissolve in hot water
Fe ²⁺	Dirty green precipitate is produced.	Dirty green precipitate is produced.			Green precipitate is produced.	
Fe ³⁺	Red brown precipitate is produced.	Red brown precipitate is produced.			Brown precipitate is produced.	A red brown solution formed.
Cu ²⁺	Blue precipitate is produced.	Blue precipitate is produced. Dissolve in excess NH ₃ solution and form a blue solution.			Blue precipitate is produced.	White precipitate form in brown solution
NH4 ⁺						

Distibguish Iron(II) and Iron(III)

Reagent	Observation	Ion presents
Solution of potassium hecxacianoferate(II)	Light blue precipitate	Fe ²⁺
	Dark Blue precipitate	Fe ³⁺
Solution of potassium hecxacianoferate(III)	Dark blue precipitate	Fe ²⁺
	Greenish brown solution	Fe ³⁺
Solution of potassium Thiocyanate(II)	Pinkish solution	Fe ²⁺
	Blood red solution	Fe ³⁺

Manufactured Substances in Industry

Contact Process (Making Sulphuric Acid)

Stage 1: Formation of SO₂

Combustion of Sulphur

$$\begin{array}{c} S_{(s)} + O_2 \ (g) \longrightarrow SO_{2 \ (g)} \\ or \end{array}$$

Heating of metal sulphide such as lead(II) sulphide

 $2PbS_{(s)} + 3O_{2(g)} \xrightarrow{} 2PbO_{(s)} + 2SO_{2(g)}$

Combustion of hiydrogen sulphide

$$2H_2S_{(g)} + 3O_{2(g)} \longrightarrow 2SO_{2(g)} + 2H_2O_{(ce)}$$

Stage 2: Formation of SO₃

 $2SO_{2\ (g)}+O_{2\ (g)} {\longrightarrow} 2SO_{3\ (g)}$

Catalyst: **vanadium(V) oxide** Temperature: **450°C** Pressure: **2-3 atmospheres**

Stage 3 Formation of oleum H₂S₂O₇

 $SO_{3(g)} + H_2SO_{4(aq)} \longrightarrow H_2S_2O_{7(l)}$

Stage 4: Formation of Sulphuric acid

 $H_2S_2O_7 (1) + H_2O (1) \longrightarrow 2H_2SO_{4(aq)}$

Haber Process (Making Ammonia)

Sources of the raw material

Hydrogen	1. Reaction between steam and heated coke		
	$H_2O + C \longrightarrow CO + H_2$		
	2. Reaction between steam and natural gas.		
	$\mathbf{2H_2O} + \mathbf{CH_4} \longrightarrow \mathbf{CO}_2 + 4\mathbf{H}_2$		
Nitrogen	From distillation of liquid air.		

The reaction

1. Ammonia is made by the Haber process from nitrogen and hydrogen:

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g); \Delta H = -92 \text{ kJ mol}^{-1}$$

Catalyst: Iron **Promoter:** Aluminium oxide **Temperature:** 450 °C **Pressure:** 200-1000 atm